Genomic Surveillance of SARS-CoV-2: A Comparison of Four Different Methods

Jonathan Plitnick¹, Saymon Akther², Moinuddin Chowdhury², Nelson De La Cruz², Jade Wang², Erica Lasek-Nesselquist¹, Daryl Lamson¹, Faten Taki², Aaron Olsen², Enoma Omoregie², Scott Hughes², Kirsten St. George¹ ¹ Wadsworth Center, New York State Department of Health² New York City Department of Health and Mental Hygiene, Bureau of the Public Health Laboratory

Objective

The purpose of this study was to evaluate four SARS-CoV-2 next generation whole genome sequencing methods as tools for genomic surveillance, comparing genome coverage, ambiguities, depth of coverage, concordance of base calling and Pangolineage assignment between the methods.

Methodology

- 86 archived SARS-CoV-2-positive samples were selected for comparative testing on Illumina, Ion Torrent S5 XL, and the Clear Dx^{TM} system (Gridlon x5).
- A subset of 40 samples were also run on the Genexus instrument.
- ARTIC Illumina sequencing was performed using a modified version of the ARTIC V4¹ amplicon panel and sequenced on a HiSeq instrument.
- Ion Torrent sequencing was performed with the Ion AmpliSeq[™] Insight Panel on an Ion S5 XL or using the Ion AmpliSeq[™] SARS-CoV-2 Insight Research Assay GX on the Genexus instrument.
- Clear Dx[™] sequencing was performed on a Clear Dx[™] instrument containing a GridION by Oxford Nanopore Technologies, using a minION v9.4 flow cell with ARTIC v3 primers from Clear Labs.

	Analysis	
•	Consensus sequences were generated with a 20x depth of coverage	Genome Coverage
	threshold and > 50% agreement for base calling.	Depth of Coverage
•	Sequences with <90% genome coverage and/or >10% ambiguous or	Gaps and Ambiguities
	missing bases were excluded from the downstream analysis	Pangolin Lineage Assignmen

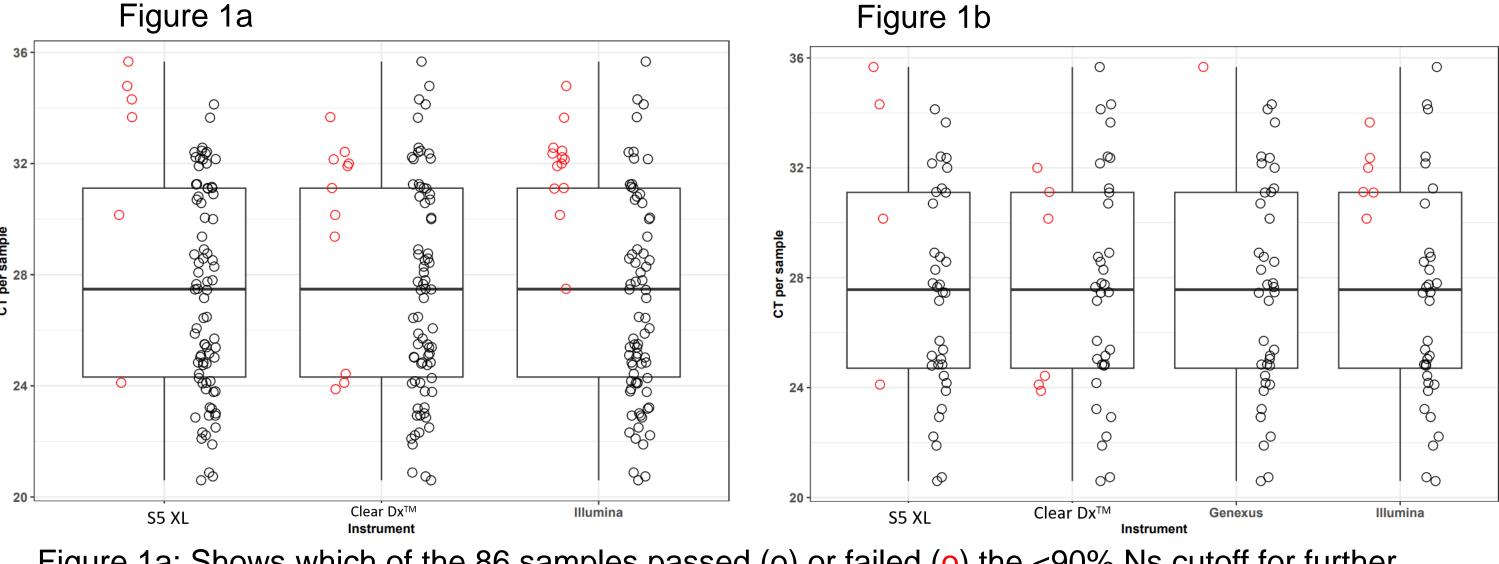
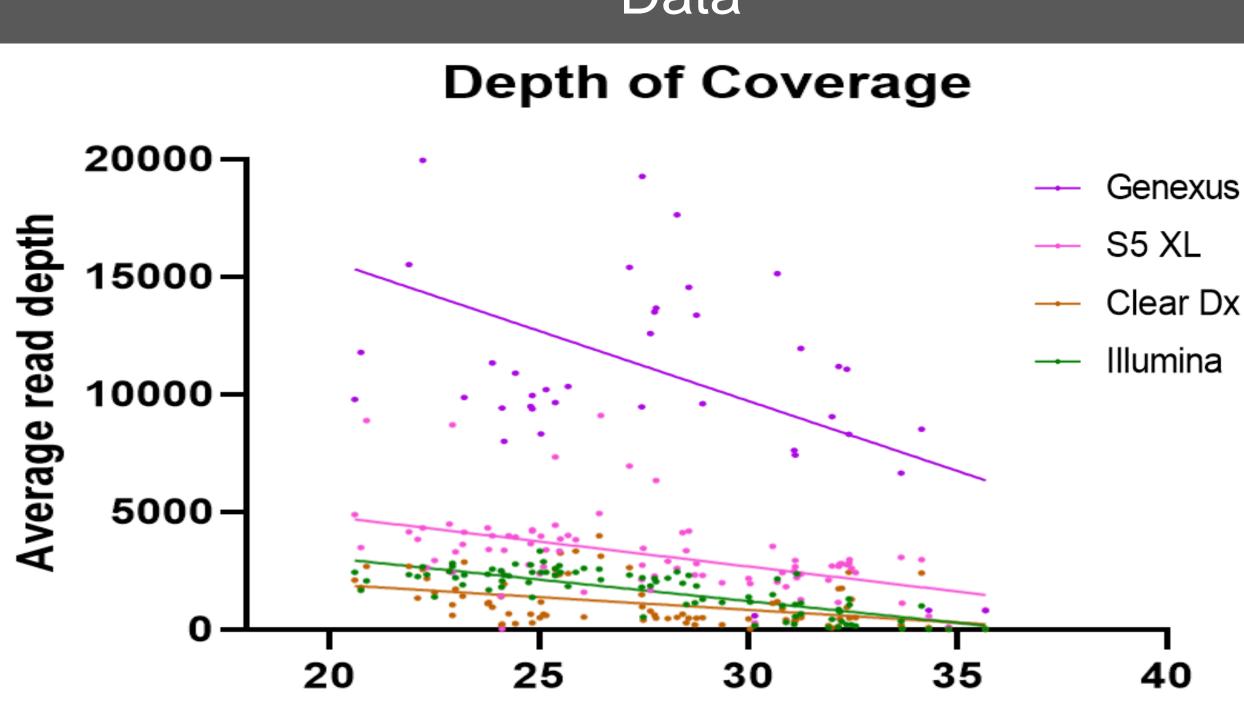
(Figure 1).

Technologies S5 XL and Genexus Clear Dx[™] Automated Library Prep Automated Library Prep ARTIC primers AmpliSeq Insight primers NanoPore Sequencing Ion Torrent Sequencing Images sourced from Technical Note: Clear Dx SARS-CoV-2 WGS V3.0, thermofisher.com, illumina.com Results

- Pangolin assigned a lineage in 89.5% (77/86), 90.7% (78/86), 96.5% (83/86), and 100% (40/40) of the samples sequenced using the Clear Dx^{TM} , Illumina, S5 XL, and Genexus instruments, respectively (Table 1).
- There were no disagreements in lineage assignments across the methods.
- Samples sequenced using the Genexus instrument maintained the highest depth of coverage across Ct values (Figure 2).
- Samples sequenced on the Clear Dx[™] and Genexus instruments had the highest percentage per site ambiguous bases in spike region of the genome (Figure 3).

Ct range	Clear Dx [™]	Illumina	S5 XL	Genexus
20-25	28/29 (97%)	29/29 (100%)	28/29 (97%)	14/14 (100%)
25-30	27/30 (90%)	30/30 (100%)	30/30 (100%)	14/14 (100%)
30+	22/27 (81%)	19/27 (70%)	25/27 (93%)	12/12 (100%)

Table 1: The number of consensus sequences that Pangolin COVID-19 Lineage Assigner was able to assign a lineage for each method, stratified by Ct range.

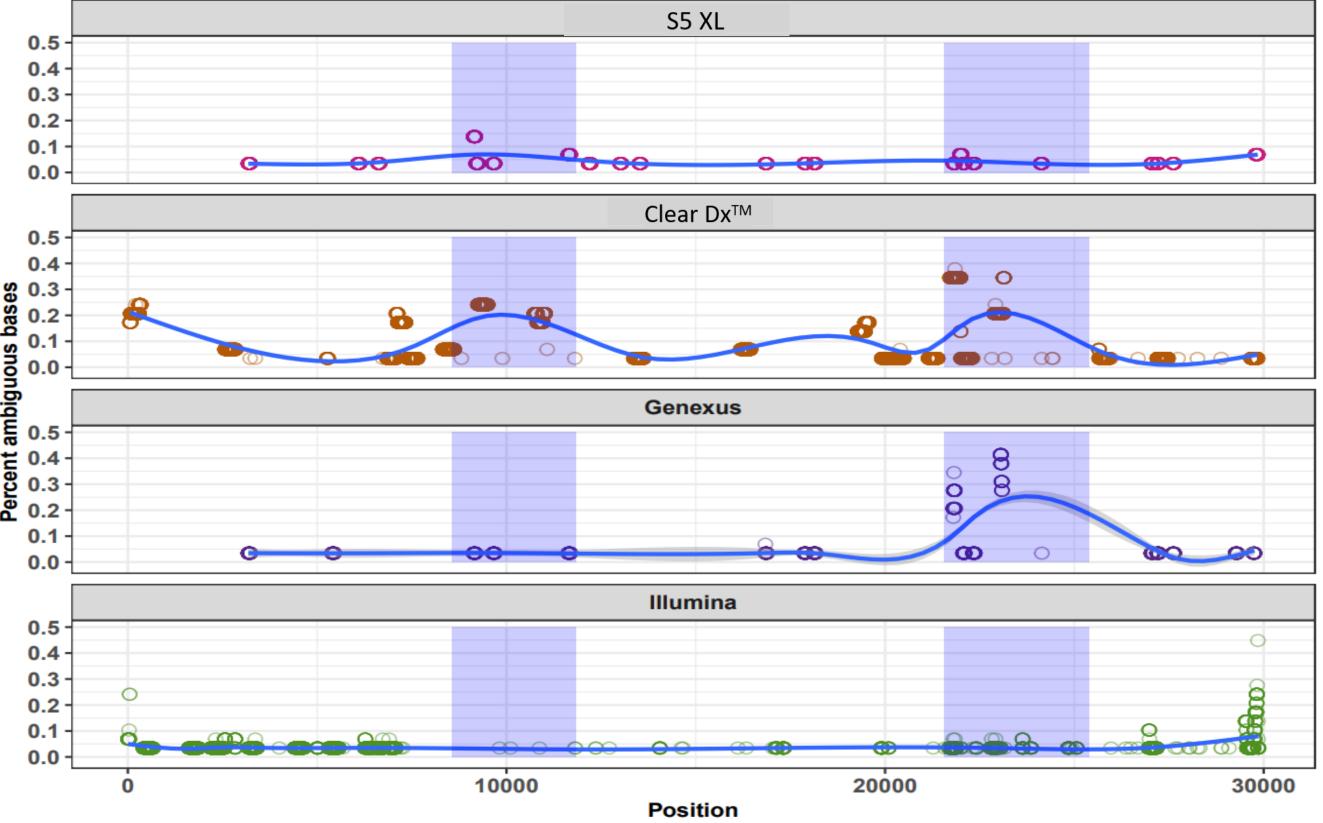

Figure 1a: Shows which of the 86 samples passed (o) or failed (o) the <90% Ns cutoff for further analysis across the S5 XL, Clear Dx[™] and Illumina instruments. Figure 1b: Shows the same for the subset of 40 samples that were also sequenced on the Genexus instrument.

Figure 1b

are highlighted.

- coverage.
- greater than 30.
- Genexus in the spike region.

Ct Value

Figure 2: The average depth of coverage per base by Ct values of samples.

Figure 3: Percent ambiguous bases per site. Nsp4-nsp6 and Spike regions of genome

Conclusion

• The Illumina HiSeq has the highest throughput potential, while Clear Dx[™], S5 XL and Genexus provides automated library prep and faster turn-around times. • In samples with the highest Ct values, Clear Dx[™] and Illumina generated lower

There were no disagreements in lineage assignment between the methods; however, both S5 XL and Genexus were able to assign a lineage to more samples with Ct values

Ambiguous base calls were observed at a higher frequency for Clear Dx[™] and

References

• ¹ Plitnick J, et al. "Whole-genome Sequencing of Sars-CoV-2: Assessment of the Ion Torrent Ampliseq Panel and Comparison with the Illumina MiSeq ARTIC Protocol." Journal of Clinical Microbiology 59.12 (2021): e00649-21.